skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cameron, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 23, 2026
  2. Abstract Understanding the properties of time averaging (age mixing) in a stratigraphic layer is essential for properly interpreting the paleofauna preserved in the geologic record. This work assesses the age and quantifies the scale and structure of time averaging of land snail-rich colluvial sediments from the Madeira Archipelago (Portugal) by dating individual shells using amino acid racemization calibrated with graphite-target and carbonate-target accelerator mass spectrometry radiocarbon methods. Gastropod shells of Actinella nitidiuscula were collected from seven sites on the volcanic islands of Bugio and Deserta Grande (Desertas Islands), where snail shells are abundant and well preserved in Quaternary colluvial deposits. Results show that the shells ranged in age from modern to ~48 cal ka BP (calibrated radiocarbon age), covering the last glacial and present interglacial periods. Snail shells retrieved from two of the colluvial sites exhibit multimillennial age mixing (>6 ka), which significantly exceeds the analytical error from dating methods and calibration. The observed multimillennial mixing of these assemblages should be taking into consideration in upcoming paleoenvironmental and paleoecological studies in the region. The extent of age mixing may also inform about the time span of colluvial deposition, which can be useful in future geomorphological studies. In addition, this study presents the first carbonate-target radiocarbon results for land snail shells and suggests that this novel, rapid, and more affordable dating method offers reliable age estimates for small land snail shells younger than ~20 cal ka BP. 
    more » « less
  3. Abstract PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R$$_\textrm{Earth}$$ Earth ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Sasián, José; Youngworth, Richard N. (Ed.)
    For the first time in the history of ground-based x-ray astronomy, the on-axis performance of the dual mirror, aspheric, aplanatic Schwarzschild-Couder optical system has been demonstrated in a 9:7-m aperture imaging atmospheric Cherenkov telescope. The novel design of the prototype Schwarzschild-Couder Telescope (pSCT) is motivated by the need of the next-generation Cherenkov Telescope Array (CTA) observatory to have the ability to perform wide (>=8°) field-of-view observations simultaneously with superior imaging of atmospheric cascades (resolution of 0:067 per pixel or better). The pSCT design, if implemented in the CTA installation, has the potential to improve significantly both the x-ray angular resolution and the off-axis sensitivity of the observatory, reaching nearly the theoretical limit of the technique and thereby making a major impact on the CTA observatory sky survey programs, follow-up observations of multi-messenger transients with poorly known initial localization, as well as on the spatially resolved spectroscopic studies of extended x-ray sources. This contribution reports on the initial alignment procedures and point-spread-function results for the challenging segmented aspheric primary and secondary mirrors of the pSCT. 
    more » « less
  5. This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere. 
    more » « less